What is #int_(pi/2)^pi x^2ln(tanx)#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer mason m Mar 25, 2017 #tanx<0# on #pi/2 < x < pi#. So #ln(tanx)# is undefined on #pi/2 < x < pi#. The integral doesn't exist. Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 1521 views around the world You can reuse this answer Creative Commons License