What is int_0^pi (lnx)^2 / x^(1/2)?

1 Answer
Dec 16, 2015

int_0^piln^2(x)/sqrt(x)dx = 2sqrt(pi)(ln^2(pi)-4ln(pi)+8)

Explanation:

First let's solve the indefinite integral intln^2(x)/sqrt(x)dx. by applying integration by parts twice:

First Integration by Parts

Let u = ln^2(x) and dv = 1/sqrt(x)dx

Then du = (2ln(x))/x and v = 2sqrt(x)

Thus

intln^2(x)/sqrt(x)dx = intudv

= uv - intvdu

=2sqrt(x)ln^2(x) - 4intln(x)/sqrt(x)dx

Second Integration by Parts

Let u = ln(x) and dv = 1/sqrt(x)

Then du = 1/x and v = 2sqrt(x)

Thus

intln(x)/sqrt(x)dx = intudv

= uv - intvdu

= 2sqrt(x)ln(x) - 2int1/sqrt(x)dx

= 2sqrt(x)ln(x) - 4sqrt(x) + C

Putting it together, we get

intln^2(x)/sqrt(x)dx = 2sqrt(x)ln^2(x) - 4intln(x)/sqrt(x)dx

= 2sqrt(x)ln^2(x) - 4(2sqrt(x)ln(x) - 4sqrt(x) + C)

= 2sqrt(x)(ln^2(x) - 4ln(x) + 8) + C

Now we can evaluate the original definite integral.

int_0^piln^2(x)/sqrt(x)dx = [2sqrt(x)(ln^2(x) - 4ln(x) + 8)]_0^pi

(Note that as there is a discontinuity at 0 we must evaluate this using a limit)

= 2sqrt(pi)(ln^2(pi) - 4ln(pi) + 8) - lim_(x->0)2sqrt(x)(ln^2(x) - 4ln(x) + 8)

= 2sqrt(pi)(ln^2(pi) - 4ln(pi) + 8) - 0

= 2sqrt(pi)(ln^2(pi) - 4ln(pi) + 8)