What does (e^(ix)-e^(-ix))/(2i) equal?
1 Answer
Oct 21, 2015
Explanation:
Use the following identities:
e^(ix) = cos x + i sin x
cos(-x) = cos(x)
sin(-x) = -sin(x)
So:
e^(ix) - e^(-ix) = (cos(x) + i sin(x)) - (cos(-x) + i sin(-x))
= (cos(x)+i(sin(x))-(cos(x)-i sin(x))
= 2i sin(x)
So:
(e^(ix) - e^(-ix))/(2i) = sin(x)