What does (e^(ix)-e^(-ix))/(2i) equal?

1 Answer
Oct 21, 2015

sin x

Explanation:

Use the following identities:

e^(ix) = cos x + i sin x

cos(-x) = cos(x)

sin(-x) = -sin(x)

So:

e^(ix) - e^(-ix) = (cos(x) + i sin(x)) - (cos(-x) + i sin(-x))

= (cos(x)+i(sin(x))-(cos(x)-i sin(x))

= 2i sin(x)

So:

(e^(ix) - e^(-ix))/(2i) = sin(x)