What does (e^(ix)+e^(ix))/(2i) equal?

1 Answer
Oct 25, 2015

sin(x) - i cos(x)

but I think you meant to ask...

Explanation:

e^(ix) = cos(x) + i sin(x)

cos(-x) = cos(x)

sin(-x) = -sin(x)

So with the question as asked:

(e^(ix) + e^(ix))/(2i) = e^(ix)/i = (cos(x) + i sin(x))/i = sin(x)-i cos(x)

I think you may have been wanting one of the following results:

(e^(ix)+e^(-ix))/2

= ((cos(x)+i sin(x)) + (cos(-x)+i sin(-x)))/2

= ((cos(x)+i sin(x)) + (cos(x)-i sin(x)))/2

= cos(x)

color(white)()

(e^(ix)-e^(-ix))/(2i)

= ((cos(x)+i sin(x)) - (cos(-x)+i sin(-x)))/(2i)

= ((cos(x)+i sin(x)) - (cos(x)-i sin(x)))/(2i)

= sin(x)