What does (e^(ix)+e^(ix))/(2i) equal?
1 Answer
Oct 25, 2015
but I think you meant to ask...
Explanation:
e^(ix) = cos(x) + i sin(x)
cos(-x) = cos(x)
sin(-x) = -sin(x)
So with the question as asked:
(e^(ix) + e^(ix))/(2i) = e^(ix)/i = (cos(x) + i sin(x))/i = sin(x)-i cos(x)
I think you may have been wanting one of the following results:
(e^(ix)+e^(-ix))/2
= ((cos(x)+i sin(x)) + (cos(-x)+i sin(-x)))/2
= ((cos(x)+i sin(x)) + (cos(x)-i sin(x)))/2
= cos(x)
(e^(ix)-e^(-ix))/(2i)
= ((cos(x)+i sin(x)) - (cos(-x)+i sin(-x)))/(2i)
= ((cos(x)+i sin(x)) - (cos(x)-i sin(x)))/(2i)
= sin(x)