What does (3+i)^(1/3) equal in a+bi form?
1 Answer
Explanation:
3+i = sqrt(10)(cos(alpha)+i sin(alpha)) wherealpha = arctan(1/3)
So
root(3)(3+i) = root(3)(sqrt(10))(cos(alpha/3)+i sin(alpha/3))
=root(6)(10)(cos(1/3 arctan(1/3)) + i sin(1/3 arctan(1/3)))
=root(6)(10)cos(1/3 arctan(1/3)) + root(6)(10)sin(1/3 arctan(1/3)) i
Since
The two other cube roots of
omega (root(6)(10)cos(1/3 arctan(1/3)) + root(6)(10)sin(1/3 arctan(1/3)) i)
=root(6)(10)cos(1/3 arctan(1/3) + (2pi)/3) + root(6)(10)sin(1/3 arctan(1/3)+(2pi)/3) i
omega^2 (root(6)(10)cos(1/3 arctan(1/3)) + root(6)(10)sin(1/3 arctan(1/3)) i)
=root(6)(10)cos(1/3 arctan(1/3) + (4pi)/3) + root(6)(10)sin(1/3 arctan(1/3)+(4pi)/3) i