What are the zero(s) of f(x)=31x^4 +57 -13x^2?

1 Answer
Oct 22, 2015

x = +-sqrt((13+-i sqrt(6899))/62)

Explanation:

f(x) = 31x^4+57-13x^2

=31(x^2)^2-13(x^2)+57

Using the quadratic formula, this has roots:

x^2 = (13+-sqrt(13^2-(4xx31xx57)))/(2*31)

=(13+-sqrt(-6899))/62

=(13+-i sqrt(6899))/62

So f(x) = 0 has roots:

x = +-sqrt((13+-i sqrt(6899))/62)