What are the components of the vector between the origin and the polar coordinate (2, (13pi)/12)(2,13π12)?

1 Answer
Dec 15, 2017

The vector is =<-((sqrt2+sqrt6))/2, ((sqrt2-sqrt6))/2 >=<(2+6)2,(26)2>

Explanation:

To convert from polar coordinates (r, theta)(r,θ) to rectangular coordinates , we apply the following equations

x=rcosthetax=rcosθ

y=rsinthetay=rsinθ

Here,

The polar coordinates are

r=2r=2

and

theta=13/12piθ=1312π

Therefore,

The rectangular coordinates are

x=2cos(13/12pi)=2cos(1/3pi+3/4pi)=2(cos(1/3pi)cos(3/4pi)-sin(1/3pi)sin(3/4pi))x=2cos(1312π)=2cos(13π+34π)=2(cos(13π)cos(34π)sin(13π)sin(34π))

= 2((1/2) * (-sqrt2/2)-(sqrt3/2) * (sqrt2/2)) =2((12)(22)(32)(22))

=2(-sqrt2-sqrt6)/4=2264

=-(sqrt2+sqrt6)/2=2+62

y=2sin(13/12pi)=2sin(1/3pi+3/4pi)=2(sin(1/3pi)cos(3/4pi)+cos(1/3pi)sin(3/4pi))y=2sin(1312π)=2sin(13π+34π)=2(sin(13π)cos(34π)+cos(13π)sin(34π))

= 2((sqrt3/2) * (-sqrt2/2)+(1/2) * (sqrt2/2)) =2((32)(22)+(12)(22))

=2(sqrt2-sqrt6)/4=2264

=(sqrt2-sqrt6)/2=262

Finally,

The vector is =<-((sqrt2+sqrt6))/2, ((sqrt2-sqrt6))/2 >=<(2+6)2,(26)2>