To convert from polar coordinates (r, theta)(r,θ) to rectangular coordinates , we apply the following equations
x=rcosthetax=rcosθ
y=rsinthetay=rsinθ
Here,
The polar coordinates are
r=2r=2
and
theta=13/12piθ=1312π
Therefore,
The rectangular coordinates are
x=2cos(13/12pi)=2cos(1/3pi+3/4pi)=2(cos(1/3pi)cos(3/4pi)-sin(1/3pi)sin(3/4pi))x=2cos(1312π)=2cos(13π+34π)=2(cos(13π)cos(34π)−sin(13π)sin(34π))
= 2((1/2) * (-sqrt2/2)-(sqrt3/2) * (sqrt2/2)) =2((12)⋅(−√22)−(√32)⋅(√22))
=2(-sqrt2-sqrt6)/4=2−√2−√64
=-(sqrt2+sqrt6)/2=−√2+√62
y=2sin(13/12pi)=2sin(1/3pi+3/4pi)=2(sin(1/3pi)cos(3/4pi)+cos(1/3pi)sin(3/4pi))y=2sin(1312π)=2sin(13π+34π)=2(sin(13π)cos(34π)+cos(13π)sin(34π))
= 2((sqrt3/2) * (-sqrt2/2)+(1/2) * (sqrt2/2)) =2((√32)⋅(−√22)+(12)⋅(√22))
=2(sqrt2-sqrt6)/4=2√2−√64
=(sqrt2-sqrt6)/2=√2−√62
Finally,
The vector is =<-((sqrt2+sqrt6))/2, ((sqrt2-sqrt6))/2 >=<−(√2+√6)2,(√2−√6)2>