What are the components of the vector between the origin and the polar coordinate #(6, (2pi)/3)#?

1 Answer
Jul 7, 2016

#((-3),(3sqrt3))#

Explanation:

To convert from #color(blue)"Polar to Cartesian coordinates"#

That is #(r,theta)to(x,y)#

#color(orange)"Reminder"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(x=rcostheta,y=rsintheta)color(white)(a/a)|)))#

here r = 6 and #theta=(2pi)/3#
#color(blue)"-------------------------------------"#
#rArrx=6cos((2pi)/3)#

#color(orange)"Reminder"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(cos((2pi)/3)=-cos(pi-(2pi)/3)=-cos(pi/3))color(white)(a/a)|)))#

#rArrx=-6cos(pi/3)=-6xx1/2=-3#
#color(blue)"--------------------------------------------------------------"#

and y #=6sin((2pi)/3)#

#color(orange)"Reminder"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(sin((2pi)/3)=sin(pi-(2pi)/3)=sin(pi/3))color(white)(a/a)|))#

#rArry=6sin(pi/3)=6xxsqrt3/2=3sqrt3#
#color(blue)"----------------------------------------------------"#

Thus the components of the vector#=((-3),(3sqrt3))#