The balanced equation is
"H"_2 + "I"_2 ⇌ "2HI"
Now, we can set up an ICE table.
color(white)(mmmmmmm)"H"_2 +color(white)(mml) "I"_2 ⇌color(white)(mll) "2HI"
"I/mol·L"^"-1": color(white)(ml)1.000color(white)(mm)1.000color(white)(mml)1.000
"C/mol·L"^"-1": color(white)(mm)"-"xcolor(white)(mmmll)"-"xcolor(white)(mmml)"+2"xcolor
"E/mol·L"^"-1": color(white)(m)"1.000-"xcolor(white)(m)"1.000-"xcolor(white)(m)"1.000+2"x
K_text(c) = (["HI"]^2)/(["H"_2]["I"_2]) = (1.000 + 2x)^2/((1.000-x)(1.000-x)) = 54.8
(1.000 + 2x)/(1.000-x) = 7.403
1.000 + 2x = 7.403 - 7.403x
9.403x = 6.403
x = 6.403/9.403 = 0.681
∴ ["H"_2] = ["I"_2] = "0.681 mol/L"
["HI"] = "(1.000 + 2×0.681) mol/L = 2.362 mol/L"
Check:
(1.000 + 2x)^2/(1.000 -x)^2 = 2.362^2/0.3191^2 = 5.579/ 0.1018= 54.8
It checks!