The base of a triangular pyramid is a triangle with corners at (6 ,7 ), (5 ,3 ), and (8 ,4 ). If the pyramid has a height of 6 , what is the pyramid's volume?

1 Answer

Volume V=11" "cubic units

Explanation:

Compute the area of the triangular base first

Area A=1/2[(x_1,x_2,x_3,x_1),(y_1,y_2,y_3,y_1)]

Area A=1/2*(x_1*y_2+x_2*y_3+x_3*y_1-x_2*y_1-x_3*y_2-x_1*y_3)

The given points are P_1(6, 7), P_2(5, 3), P_3(8, 4)

Area A=1/2[(x_1,x_2,x_3,x_1),(y_1,y_2,y_3,y_1)]

Area A=1/2[(6,5,8,6),(7,3,4,7)]

Area A=1/2*(6*3+5*4+8*7-5*7-8*3-6*4)

Area A=1/2*(18+20+56-35-24-24)

Area A=1/2*(94-83)

Area A=1/2*(11)=5.5

Compute the volume of the triangular pyramid

V=1/3*A*h=1/3*11/2*6

V=11" "cubic units

God bless....I hope the explanation is useful.