The base of a triangular pyramid is a triangle with corners at (6 ,1 )(6,1), (2 ,4 )(2,4), and (4 ,3 )(4,3). If the pyramid has a height of 2 2, what is the pyramid's volume?

1 Answer
Jan 25, 2017

2/3 unit^323unit3

Explanation:

let say x_1=6,x_2=2,x_3=4, y_1=1,y_2=4 and y_3=3x1=6,x2=2,x3=4,y1=1,y2=4andy3=3

pyramid volume =1/3=13base areaheight

Base area =1/2|[(x_1*y_2)+(x_2*y_3)+(x_3*y_1)]-[(y_1*x_2) +(y_2*x_3)+(y_3*x_1)]|=12|[(x1y2)+(x2y3)+(x3y1)][(y1x2)+(y2x3)+(y3x1)]|

=1/2|[(6*4)+(2*3)+(4*1)]-[(1*2)+(4*4)+(3*6)]|=12|[(64)+(23)+(41)][(12)+(44)+(36)]|

=1/2|(24+6+4)-(2+16+18)|=12|(24+6+4)(2+16+18)|

=1/2|34-36|=12|3436|
=1/2*2=1 unit^2=122=1unit2

Therefore the pyramid's volume =1/3*1*2=2/3 unit^3=1312=23unit3