The base of a triangular pyramid is a triangle with corners at (4 ,2 )(4,2), (3 ,6 )(3,6), and (7 ,5 )(7,5). If the pyramid has a height of 6 6, what is the pyramid's volume?

1 Answer
Jun 9, 2018

color(violet)("Volume of a pyramid " V_p = 1/3*A_b*h= 15" cubic.units"Volume of a pyramid Vp=13Abh=15 cubic.units

Explanation:

color(purple)("Volume of a pyramid " V_p = 1/3* A_b * hVolume of a pyramid Vp=13Abh

(x_1,y_1)=(4,2) ,(x_2,y_2)=(3,6),(x_3,y_3)=(7,5) , h=6(x1,y1)=(4,2),(x2,y2)=(3,6),(x3,y3)=(7,5),h=6

color(indigo)("Area of Triangle "Area of Triangle

color(indigo)(A_b = |1/2(x_1(y_2−y_3)+x_2(y_3−y_1)+x_3(y_1−y_2))|Ab=12(x1(y2y3)+x2(y3y1)+x3(y1y2))

A_b = |1/2(4(6−5)+3(5−2)+7(2−6))| = 15/2 " sq units"Ab=12(4(65)+3(52)+7(26))=152 sq units

color(violet)("Volume of a pyramid " Volume of a pyramid

color(violet)(V_p = 1/3*A_b*h=1/3 *15/2*6= 15" cubic.unit"Vp=13Abh=131526=15 cubic.unit