The 15th term of an arithmetic series is 52, and the sum of the first 15 terms is 405 how do you find the sum of the first 22 terms?
1 Answer
Explanation:
Recall the following:
#1. color(blue)(|bar(ul(color(white)(a/a)"Arithmetic sequence": t_n=a+(n-1)dcolor(white)(a/a)|)))# where:
#t_n=# term number
#a=# first term
#n=# number of terms
#d=# common difference
#2. color(purple)(|bar(ul(color(white)(a/a)"Arithmetic series": S_n=n/2(2a+(n-1)d)color(white)(a/a)|)))# where:
#S_n=# sum of#n# numbers, starting at#a#
#n=# number of terms
#a=# first term
#d=# common difference
Determining the First Term and Common Difference
#t_n=a+(n-1)d#
#52=a+(15-1)d#
#color(darkorange)("Equation"color(white)(i)1): 52=a+14d#
#S_n=n/2(2a+(n-1)d)#
#405=15/2(2a+(15-1)d)#
#405=15/2(2a+14d)#
#color(darkorange)("Equation"color(white)(i)2): 405=15a+105d#
#color(teal)15(52)=color(teal)15(a+14d)#
#780=15a+210d#
#color(white)(xxx)780=15a+210d#
#(-(405)=-(15a+105d))/(color(brown)(375=0a+105d))#
#375=0a+105d#
#375=105d#
#color(green)(|bar(ul(color(white)(a/a)d=25/7color(white)(a/a)|)))#
#780=15a+210d#
#780=15a+210(25/7)#
#780=15a+750#
#30=15a#
#color(green)(|bar(ul(color(white)(a/a)a=2color(white)(a/a)|)))#
Determining the Sum of the First 22 Terms
#S_n=n/2(2a+(n-1)d)#
#S_22=22/2(2(2)+(22-1)(25/7))#
#S_22=11(4+21(25/7))#
#S_22=11(4+75)#
#color(green)(|bar(ul(color(white)(a/a)S_22=869color(white)(a/a)|)))#