Tan(2x)-cot(x)=0?

I solved it and got the solutions: pi/6, 5pi/6, 7pi/6 and 11pi/6. Why did I not get the pi/2 and 3pi/2 solutions?

1 Answer
Feb 18, 2018

My solution is found in explanation section.

Explanation:

tan2x-cotx=0

tan2x=cotx

tan2x*tanx=1

(sin2x*sinx)/(cos2x*cosx)=1

[1/2*(cosx-cos3x)]/[1/2*(cos3+cosx)]=1

(cosx-cos3x)/(cos3x+cosx)=1

cosx-cos3x=cos3x+cosx

2cos3x=0

cos3x=0

I have 2 states for cos3x=0,

a) cos3x=cos(pi/2+2pi*k)

3x=pi/2+2pi*k, so x=pi/6+(2pi)/3*k

Consequently, x_1=pi/6, x_2=(5pi)/6 and x_3=(3pi)/2 for k=0, 1 and 2

b) cos3x=cos((3pi)/2+2pi*k)

3x=(3pi)/2+2pi*k, so x=pi/2+(2pi)/3*k

Consequently, x_4=pi/2, x_5=(7pi)/6 and x_6=(11pi)/6 for k=0, 1 and 2