Solve (5 questions)?
(Only use partial fractions where possible)
\intx\sinx\cosxdx
\int(x^P)/(x(x^(2P)+1)dx
\int(\lnx)/(x\sqrt(1+(\lnx)^2) dx
\int\sqrt(1+e^x)dx
\int(x+\sin^-1(x))/(\sqrt(1-x^2)) dx
(Only use partial fractions where possible)
\intx\sinx\cosxdx \int(x^P)/(x(x^(2P)+1)dx \int(\lnx)/(x\sqrt(1+(\lnx)^2) dx \int\sqrt(1+e^x)dx \int(x+\sin^-1(x))/(\sqrt(1-x^2)) dx
2 Answers
Explanation:
Not sure we really need partial fractions except in one case:
integrate by parts:
Substitute
Substitute
Substitute
Explanation:
Here is the answer to
I = int x(1/2sin(2x))dx
I = int (xsin(2x))/2dx
I = 1/2int xsin(2x) dx
Now let
Now recall that integration by parts is
int udv =uv - int vdu
int xsin(2x)dx = -1/2xcos(2x) - int -1/2cos(2x)dx
int xsin(2x)dx= -1/2xcos(2x) + int 1/2cos(2x)dx
int xsin(2x)dx= -1/2xcos(2x) + 1/4sin(2x) + C
1/2int xsin(2x)dx= 1/8sin(2x) - 1/4xcos(2x) + C
Hopefully this helps!