Solve for x using properties of logarithms: ln(9)+ln(x+2)=2ln(x+2) ?

1 Answer
Feb 28, 2018

x=7x=7

Explanation:

ln(9)+1n(x+2)=2ln(x+2)ln(9)+1n(x+2)=2ln(x+2)

Subtract 2ln(x+2)2ln(x+2) from both sides:

ln(9)+1n(x+2)-2ln(x+2)=0ln(9)+1n(x+2)2ln(x+2)=0

Simplify:

ln(9)-1n(x+2)=0ln(9)1n(x+2)=0

ln(a)-ln(b)=ln(a/b)ln(a)ln(b)=ln(ab)

Hence:

ln(9)-1n(x+2)=0=>ln(9/(x+2))=0ln(9)1n(x+2)=0ln(9x+2)=0

Raising the base ee to these powers:

e^(ln(9/(x+2))=e^0eln(9x+2)=e0

9/(x+2)=19x+2=1

x=7x=7

Substituting in original equation:

ln(9)+1n((7)+2)=2ln((7)+2)ln(9)+1n((7)+2)=2ln((7)+2)

ln(9)+1n(9)=2ln(9)ln(9)+1n(9)=2ln(9)

2ln(9)=2ln(9)2ln(9)=2ln(9)