ln(9)+1n(x+2)=2ln(x+2)ln(9)+1n(x+2)=2ln(x+2)
Subtract 2ln(x+2)2ln(x+2) from both sides:
ln(9)+1n(x+2)-2ln(x+2)=0ln(9)+1n(x+2)−2ln(x+2)=0
Simplify:
ln(9)-1n(x+2)=0ln(9)−1n(x+2)=0
ln(a)-ln(b)=ln(a/b)ln(a)−ln(b)=ln(ab)
Hence:
ln(9)-1n(x+2)=0=>ln(9/(x+2))=0ln(9)−1n(x+2)=0⇒ln(9x+2)=0
Raising the base ee to these powers:
e^(ln(9/(x+2))=e^0eln(9x+2)=e0
9/(x+2)=19x+2=1
x=7x=7
Substituting in original equation:
ln(9)+1n((7)+2)=2ln((7)+2)ln(9)+1n((7)+2)=2ln((7)+2)
ln(9)+1n(9)=2ln(9)ln(9)+1n(9)=2ln(9)
2ln(9)=2ln(9)2ln(9)=2ln(9)