sin^2x-3sinx=-1sin2x−3sinx=−1
let sinx=psinx=p
then equation becomes
p^2-3p=-1p2−3p=−1 now solve for pp
as,
p^2-3p=-1p2−3p=−1
=>p^2-3p+1=0⇒p2−3p+1=0
from quadratic formula
p=(3+-sqrt((-3)^2-4(1)(1)))/(2(1))p=3±√(−3)2−4(1)(1)2(1)
=>p=(3+sqrt5)/2⇒p=3+√52 or p=(3-sqrt5)/2p=3−√52
=>sinx=(3-sqrt5)/2,cancel((3+sqrt5)/2),second value not possible since sinx cannot exceed 1
(3-sqrt5)/2 can be written as sin(sin^-1((3-sqrt5)/2))
=:.sinx=sin(sin^-1((3-sqrt5)/2))
=>x=2npi+(-1)^nsin^-1((3-sqrt5)/2)
this is general solution
put n=0,1 for principal solution