No initial current in the inductor, switch in open state find: (a) Immediately after Close, I_1, I_2, I_3, & V_LI1,I2,I3,&VL? (b) Close long I_1, I_2, I_3, & V_LI1,I2,I3,&VL? (c) Immediately after Open, I_1, I_2, I_3, & V_LI1,I2,I3,&VL? (d) Open Long, I_1, I_2, I_3, & V_LI1,I2,I3,&VL?

enter image source here

1 Answer
Nov 29, 2016

Considering two independent currents I_1I1 and I_2I2 with two independents loops we have

loop 1) E=R_1I_1+R_1(I_1-I_2)E=R1I1+R1(I1I2)
loop 2) R_2I_2+L dot I_2+R_1(I_2-I_1)=0R2I2+L.I2+R1(I2I1)=0 or

{(2R_1 I_1-R_1I_2=E),(-R_1I_1+(R_1+R_2)I_2+L dot I_2=0):}

Substituting I_1=(E-R_1I_2)/(2R_1) into the second equation we have

E+(R_1+2R_2)I_2+2L dot I_2=0 Solving this linear differential equation we have

I_2=C_0e^(-t/tau)+E/(R_1+2R_2) with tau=(2L)/(R_1+2R_2)

The constant C_0 is determined according to the initial conditions.

I_2(0)=0 so

0=C_0+E/(R_1+2R_2)

Substituting C_0 we have

I_2=E/(R_1+2R_2)(1-e^(-t/tau))

Now we can answer the items.

a) I_2=0,I_1=10/8,V_L=10/8 4
b) I_2=10/(4+2 cdot8),I_1=?, V_L=0
c) I_2=?,I_1=0,V_L=? we let those answers to the reader
d) I_1=I_2=V_L=0