\int1/(x^2+a^2)dx?

"Let a be a constant, and evaluate the integral."

1 Answer
Apr 13, 2018

See process below

Explanation:

int1/(x^2+a^2)dx

Lets do the change x=atantheta. With this change we have

dx=asec^2theta d theta. Put in the integral

int(cancelasec^2theta d theta)/(a^cancel2(tan^2theta+1))

But tan^2theta+1=sec^2theta. The we have

int(cancelacancelsec^2theta d theta)/(a^cancel2cancelsec^2theta)=1/aint d theta=1/atheta +C

Undoing the change theta= arctan(x/a). We have finally

int1/(x^2+a^2)dx=1/a arctan(x/a)+C