Name PP the perimeter of the rectangle.
Name LL its length and WW its width.
Given:
P=5x^2+2xy-7y^2+16P=5x2+2xy−7y2+16
L=-2x^2+6xy-y^2+15L=−2x2+6xy−y2+15
P_(Rec)=2*(L+W)PRec=2⋅(L+W)
rArr5x^2+2xy-7y^2+16=2*(-2x^2+6xy-y^2+15+W)⇒5x2+2xy−7y2+16=2⋅(−2x2+6xy−y2+15+W)
rArr5x^2+2xy-7y^2+16=-4x^2+12xy-2y^2+30+2W⇒5x2+2xy−7y2+16=−4x2+12xy−2y2+30+2W
rArr5x^2+2xy-7y^2+16+4x^2-12xy+2y^2-30=+2W⇒5x2+2xy−7y2+16+4x2−12xy+2y2−30=+2W
rArr5x^2+4x^2+2xy-12xy-7y^2+2y^2+16-30=+2W⇒5x2+4x2+2xy−12xy−7y2+2y2+16−30=+2W
rArr9x^2-10xy-5y^2-14=+2W⇒9x2−10xy−5y2−14=+2W
rArr(9x^2-10xy-5y^2-14)/2=W⇒9x2−10xy−5y2−142=W
rArr9/2x^2-5xy-5/2y^2-7=W⇒92x2−5xy−52y2−7=W