If the perimeter of a rectangle is 5x^2+2xy-7y^2+165x2+2xy7y2+16, and the length is -2x^2+6xy-y^2+152x2+6xyy2+15, what is the width?

1 Answer
Oct 27, 2016

rArrW=9/2x^2-5xy-5/2y^2-7W=92x25xy52y27

Explanation:

Name PP the perimeter of the rectangle.
Name LL its length and WW its width.

Given:
P=5x^2+2xy-7y^2+16P=5x2+2xy7y2+16

L=-2x^2+6xy-y^2+15L=2x2+6xyy2+15

P_(Rec)=2*(L+W)PRec=2(L+W)

rArr5x^2+2xy-7y^2+16=2*(-2x^2+6xy-y^2+15+W)5x2+2xy7y2+16=2(2x2+6xyy2+15+W)

rArr5x^2+2xy-7y^2+16=-4x^2+12xy-2y^2+30+2W5x2+2xy7y2+16=4x2+12xy2y2+30+2W

rArr5x^2+2xy-7y^2+16+4x^2-12xy+2y^2-30=+2W5x2+2xy7y2+16+4x212xy+2y230=+2W

rArr5x^2+4x^2+2xy-12xy-7y^2+2y^2+16-30=+2W5x2+4x2+2xy12xy7y2+2y2+1630=+2W

rArr9x^2-10xy-5y^2-14=+2W9x210xy5y214=+2W

rArr(9x^2-10xy-5y^2-14)/2=W9x210xy5y2142=W

rArr9/2x^2-5xy-5/2y^2-7=W92x25xy52y27=W