If alpha,beta are the roots of 2x^2+x+3=0 then (1-alpha)/(1+alpha)+(1-beta)/(1+beta) is?

1 Answer
Apr 30, 2018

-1/2

Explanation:

We know that,

If alpha and beta are the roots of ax^2+bx+c=0 , then

alpha+beta=-b/a and alpha*beta=c/a

Here,

2x^2+x+3=0=>a=2 ,b=1and c=3

So,

color(red)(alpha+beta=-1/2 and alpha*beta=3/2...to(1)

Given,

(1-alpha)/(1+alpha)+(1-beta)/(1+beta)=(1-alpha+beta- alphabeta+1+alpha-beta-alphabeta)/(1+alpha+beta+alphabeta)

=(2-2alphabeta)/(1+(alpha+beta)+alphabeta)

=(2-2(3/2))/(1-1/2+3/2)...to[ from(1) ]

=(2-3)/(1+1)

=-1/2