If a[1]=4 and r=2, what are the first four terms of the geometric sequence?

1 Answer
Mar 13, 2016

4, 8, 16, 32

Explanation:

Recall that the geometric sequence formula is written as:

color(blue)(|bar(ul(color(white)(a/a)t_n=ar^(n-1)color(white)(a/a)|)))

where:
t_n=term number
a=first term
r=common ratio
n=number of terms

Determining the First Four Terms
1. Since the value of a has already been given, the first term is 4.

color(green)(|bar(ul(color(white)(a/a)t_1=4color(white)(a/a)|)))

color(red)(rArr)Sequence thus far: 4,...

2. Using the geometric sequence formula, substitute your known values to determine the second term.

t_n=ar^(n-1)

t_2=4(2)^(2-1)

t_2=4(2)^1

color(green)(|bar(ul(color(white)(a/a)t_2=8color(white)(a/a)|)))

color(red)(rArr)Sequence thus far: 4,8,...

3. Repeat for the third term.

t_n=ar^(n-1)

t_3=4(2)^(3-1)

t_3=4(2)^2

t_3=4(4)

color(green)(|bar(ul(color(white)(a/a)t_3=16color(white)(a/a)|)))

color(red)(rArr)Sequence thus far: 4,8,16,...

4. Repeat for the fourth term.

t_n=ar^(n-1)

t_4=4(2)^(4-1)

t_4=4(2)^3

t_4=4(8)

color(green)(|bar(ul(color(white)(a/a)t_4=32color(white)(a/a)|)))

color(red)(rArr)Sequence thus far: 4, 8, 16, 32

:., the first four terms of the sequence are 4, 8, 16, "and" 32.