In the equation sqrt(3x+1)-1=sqrt(8x-1)√3x+1−1=√8x−1 we can only have 3x+1>=03x+1≥0 and 8x-1>=08x−1≥0 i.e. x>=-1/3x≥−13 and x>=1/8x≥18 i.e. x>=1/8x≥18 or x>=0.125x≥0.125.
To solve the equation sqrt(3x+1)-1=sqrt(8x-1)√3x+1−1=√8x−1
squaring each side, we get
3x+1-2sqrt(3x+1)+1=8x-13x+1−2√3x+1+1=8x−1
now take irrational portion on the left and we get
-2sqrt(3x+1)=8x-1-3x-1-1=5x-3−2√3x+1=8x−1−3x−1−1=5x−3
squaring again 4(3x+1)=25x^2-30x+94(3x+1)=25x2−30x+9
or 25x^2-30x+9=12x+425x2−30x+9=12x+4
or 25x^2-42x+5=025x2−42x+5=0
or x=(42+-sqrt(42^2-500))/50=(42+-sqrt1264)/50=(42+-35.553)/50x=42±√422−50050=42±√126450=42±35.55350
i.e. x=0.129x=0.129 or 1.5511.551
However on checking 1.5511.551 is not found to be a solution and hence only answer is x=0.129x=0.129