How to solve this?sinx+sin2x+sin3x=0sinx+sin2x+sin3x=0

1 Answer
Mar 22, 2017

x = (kpi)/2x=kπ2
x = +- (2pi)/3 + 2kpix=±2π3+2kπ

Explanation:

Use trig identity:
sin a + sin b = 2sin ((a + b)/2).cos ((a - b)/2)sina+sinb=2sin(a+b2).cos(ab2)
In this case:
sin x + sin 3x = 2sin (2x).cos (x)sinx+sin3x=2sin(2x).cos(x)
(sin x + sin 3x) + sin 2x = 2sin (2x)cos (x) + sin (2x) = (sinx+sin3x)+sin2x=2sin(2x)cos(x)+sin(2x)=
= sin (2x)(2cos x + 1) = 0=sin(2x)(2cosx+1)=0
Either one of the 2 factors must be zero.
a. sin 2x = 0
2x = 0 --> x = 0
2x = pi2x=π --> x = pi/2x=π2
2x = 2pi2x=2π --> x = pix=π
General answer: x = (kpi)/2x=kπ2
b. 2cos x + 1 = 0 --> cos x = - 1/2cosx=12
Trig table and unit circle give 2 solutions -->
x = +- (2pi)/3 + 2kpix=±2π3+2kπ