How to calculate this limit?lim_(n->oo)prod_(k=1)^ncos(2^(k-1)x);x!=kpi

1 Answer
Mar 28, 2017

0

Explanation:

sin(2^kx)=2cos(2^(k-1)x)sin(2^(k-1)x)

or

f_k = 2 cos(2^(k-1)x)f_(k-1)
f_(k-1) = 2 cos(2^(k-2)x)f_(k-2)
cdots
f_1 = 2 cos(x)f_0

then

f_k = (2^k prod_(j=0)^k cos(2^jx)) f_0

then

prod_(j=0)^n cos(2^jx)=1/2^n(f_n)/(f_0)=1/2^n(sin(2^n x)/sinx)

we can then conclude that for x ne k pi

lim_(n->oo)prod_(j=0)^n cos(2^jx)=0

because if x ne k pi with k in ZZ we have

abs(sin(2^n x)/sinx) le M

so there exists n such that M/2^n < epsilon for arbitrarily small epsilon.

Impact of this question
2180 views around the world
You can reuse this answer
Creative Commons License