How do you find the product of power series?

1 Answer
Sep 25, 2014

(sum_{n=0}^infty a_nx^n)cdot(sum_{n=0}^infty b_nx^n)=sum_{n=0}^infty(sum_{k=0}^na_kb_{n-k})x^n(n=0anxn)(n=0bnxn)=n=0(nk=0akbnk)xn

Let us look at some details.

(sum_{n=0}^infty a_nx^n)cdot(sum_{n=0}^infty b_nx^n)(n=0anxn)(n=0bnxn)

by writing out the first few terms,

=(a_0+a_1x+a_2x^2+cdots)cdot(b_0+b_1x+b_2x^2+cdots)=(a0+a1x+a2x2+)(b0+b1x+b2x2+)

by collecting the like terms,

=a_0b_0x^0+(a_0b_1+a_1b_0)x^1+(a_0b_2+a_1b_1+a_2b_0)x^2+cdots=a0b0x0+(a0b1+a1b0)x1+(a0b2+a1b1+a2b0)x2+

by using sigma notation,

=sum_{n=0}^infty(sum_{k=0}^na_kb_{n-k})x^n=n=0(nk=0akbnk)xn