How to calculate int(3x^2)/(x^2-2x-8)dx ?

1 Answer
Jun 4, 2018

I=3x+8ln|x-4|-2ln|x+2|+c

Explanation:

Here,

I=int(3x^2)/(x^2-2x-8)dx

I=int(color(red)(3x^2))/((x-4)(x+2))dx...to(A)

Now,

2x(x+2)+x(x-4)=2x^2+4x+x^2-4x

color(red)(2x(x+2)+x(x-4)=3x^2

Subst. for , color(red)(3x^2) , into (A)

I=int([color(red)(2x(x+2)+x(x-4))])/((x-4)(x+2))dx

=int[(2x(x+2))/((x-4)(x+2))+(x(x-4))/((x-4)(x+2))]dx

=2int(x)/(x-4)dx+intx/(x+2)dx

=2int(x-4+4)/(x-4)dx+int(x+2-2)/(x+2)dx

=2int(1+4/(x-4))dx+int(1-2/(x+2))dx

=2[x+4ln|x-4|]+[x-2ln|x+2|]+c

=2x+8ln|x-4|+x-2ln|x+2|+c

=3x+8ln|x-4|-2ln|x+2|+c