Here,
I=int(3x^2)/(x^2-2x-8)dx
I=int(color(red)(3x^2))/((x-4)(x+2))dx...to(A)
Now,
2x(x+2)+x(x-4)=2x^2+4x+x^2-4x
color(red)(2x(x+2)+x(x-4)=3x^2
Subst. for , color(red)(3x^2) , into (A)
I=int([color(red)(2x(x+2)+x(x-4))])/((x-4)(x+2))dx
=int[(2x(x+2))/((x-4)(x+2))+(x(x-4))/((x-4)(x+2))]dx
=2int(x)/(x-4)dx+intx/(x+2)dx
=2int(x-4+4)/(x-4)dx+int(x+2-2)/(x+2)dx
=2int(1+4/(x-4))dx+int(1-2/(x+2))dx
=2[x+4ln|x-4|]+[x-2ln|x+2|]+c
=2x+8ln|x-4|+x-2ln|x+2|+c
=3x+8ln|x-4|-2ln|x+2|+c