How do you write the expression #n*n*n# using exponents? Prealgebra Exponents, Radicals and Scientific Notation Exponents 1 Answer Barney V. Jan 9, 2017 #n^3# Explanation: #n * n * n# #= n xx n xx n= 3 n's=n^3# #n * n * n * n =n^4# #n * n * n * n * n = n^5 etc.# Answer link Related questions How do you simplify #c^3v^9c^-1c^0#? How do you simplify #(- 1/5)^-2 + (-2)^-2#? How do you simplify #(4^6)^2 #? How do you simplify #3x^(2/3) y^(3/4) (2x^(5/3) y^(1/2))^3 #? How do you simplify #4^3ยท4^5#? How do you simplify #(5^-2)^-3#? How do you simplify and write #(-5.3)^0# with positive exponents? How do you factor #12j^2k - 36j^6k^6 + 12j^2#? How do you simplify the expression #2^5/(2^3 times 2^8)#? When can I add exponents? See all questions in Exponents Impact of this question 1887 views around the world You can reuse this answer Creative Commons License