#4,4,2+i#
Root #4# is multiplicity #2# #2+i# Complex Conjugate Zero is #2-i#, we have: #P(x)=(x-4)^2(x-2-i)(x-2+i)# #P(x)=(x^2-8x+16)[(x-2)^2-i^2]# #P(x)=(x^2-8x+16)(x^2-4x+4-(-1)]# #P(x)=(x^2-8x+16)(x^2-4x+5)# #P(x)=x^4-4x^3+5x^2-8x^3+32x^2-40x+16x^2-64x+80# #P(x)=x^4-12x^3+53x^2-104x+80#