4,4,2+i4,4,2+i
Root 44 is multiplicity 22
2+i2+i Complex Conjugate Zero is 2-i2−i, we have:
P(x)=(x-4)^2(x-2-i)(x-2+i)P(x)=(x−4)2(x−2−i)(x−2+i)
P(x)=(x^2-8x+16)[(x-2)^2-i^2]P(x)=(x2−8x+16)[(x−2)2−i2]
P(x)=(x^2-8x+16)(x^2-4x+4-(-1)]P(x)=(x2−8x+16)(x2−4x+4−(−1)]
P(x)=(x^2-8x+16)(x^2-4x+5)P(x)=(x2−8x+16)(x2−4x+5)
P(x)=x^4-4x^3+5x^2-8x^3+32x^2-40x+16x^2-64x+80P(x)=x4−4x3+5x2−8x3+32x2−40x+16x2−64x+80
P(x)=x^4-12x^3+53x^2-104x+80P(x)=x4−12x3+53x2−104x+80