How do you verify #Sec(x) - cos(x) = sin(x) * tan(x)#?
1 Answer
Mar 7, 2016
see explanation
Explanation:
using the following
#color(blue)" trigonometric identities "#
#secx = 1/(cosx) , tanx = sinx/cosx , sin^2x + cos^2x = 1 # left hand side = secx - cosx =
# 1/cosx - cosx/1# rewrite as a single fraction.
#(1 - cos^2x)/(cosx) = sin^2x /(cosx) # 'split into the product of 2 functions '
#rArr = sinx . sinx/cosx = sinx.tanx = " right hand side "#