How do you verify Cos(x+(pi/6))- cos(x-(pi/6))=1?

1 Answer
Sep 24, 2016

cos(x+pi/6)-cos(x-pi/6)=-sinx and not 1.

It is 1, only when -sinx=1 i.e. x=(3pi)/2

Explanation:

As cos(A+B)=cosAcosB-sinAsinB and

cos(A-B)=cosAcosB+sinAsinB

Hence cos(A+B)-cos(A-B)=-2sinAsinB

Hence cos(x+pi/6)-cos(x-pi/6)=-2sinxsin(pi/6)

= -2sinx xx1/2=-sinx

Hence cos(x+pi/6)-cos(x-pi/6)=-sinx and not 1.

It is 1, only when -sinx=1 i.e. x=(3pi)/2