How do you use the quadratic formula to solve sintheta/2=3/(sintheta+2) for 0<=theta<360?

2 Answers
Mar 29, 2017

There is no solution.

Explanation:

Note that if a/b=c/d then axxd=bxxc

Now we have sintheta/2=3/(sintheta+2), hence

sintheta(sintheta+2)=6

or sin^2theta+2sintheta-6=0

Now as per quadratic formula, if we have a quadratic equation ax^2+bx+c=0 in x, then x=(-b+-sqrt(b^2-4ac))/(2a)

Here we have the equation sin^2theta+2sintheta-6=0 in sintheta and therefore using quadratic formula

sintheta=(-2+-sqrt(2^2-4*1*(-6)))/2 or

=(-2+-sqrt(28))/2=-1+-sqrt7

But sintheta can have values only from -1 to 1 and both values -1+sqrt7 and -1-sqrt7, are out of the range. Hence

There is no solution.

Mar 29, 2017

no solution. see explanation.

Explanation:

sin theta/2 = 3/(sin theta +2)

sin theta(sin theta +2) = 3 *2
sin^2 theta + 2sin theta = 6
sin^2 theta + 2sin theta - 6 = 0

a = 1, b = 2 and c= -6

sin theta = (- b +-sqrt(b^2 - 4ac))/(2a)

sin theta = (- 2 +-sqrt(2^2 - 4(1)(-6)))/(2(1))

sin theta = (- 2 +-sqrt(4 +24))/(2)

sin theta = (- 2 +-sqrt(28))/(2) = (- 2 +-sqrt(4*7))/(2)

sin theta = (- 2 +-2sqrt(7))/(2)= -1 +-sqrt(7) = -1 +- 2.656

when sin theta = -1 + 2.656 = 1.656,
theta = sin^-1 (1.656) no solution/not valid

when sin theta = -1 - 2.656 = -3.656,
theta = sin^-1 (-3.656) no solution/not valid