How do you use the quadratic formula to solve sec^2theta-2sectheta-4=0 for 0<=theta<360?

1 Answer
Jan 24, 2017

theta=72^@ or 144^@ or 216^@ or 288^@

Explanation:

The solution of quadratic equation ax^2+bx+c=0 is x=(-b+-sqrt(b^2-4ac))/(2a)

Hence using quadratic formula as sec^2theta-2sectheta-4=0

sectheta=(-(-2)+-sqrt((-2)^2-4xx1xx(-4)))/2

= (2+-sqrt(4+16))/2=(2+-sqrt20)/2=(2+-2sqrt5)/2=1+-sqrt5

As sqrt5=2.23607, sectheta=3.23607 or -1.23607

If sectheta=3.23607, theta=72^@ or 360^@-72^@=288^@

and if sectheta=-1.23607, theta=144^@ or 360^@-144^@=216^@

Note : sec72^@=sqrt5+1 and sec144^@=-sqrt5+1