How do you use the quadratic formula to solve 4cos^2x-4cosx-1=04cos2x4cosx1=0 in the interval [0,2pi)[0,2π)?

1 Answer
Feb 17, 2017

101^@95 ; 258^@0510195;25805

Explanation:

Solve this quadratic equation for cos x by using the improved quadratic formula:
f(x) = 4cos^2 x - 4cosx - 1 = 0f(x)=4cos2x4cosx1=0
D = d^2 = b^2 - 4ac = 16 + 16 = 32D=d2=b24ac=16+16=32 --> d = +- 4sqrt2d=±42
There are 2 real roots:
cos x = - b/(2a) +- d/(2a) = 4/8 +- 4sqrt2/8 = (1 +- sqrt2)/2cosx=b2a±d2a=48±428=1±22
cos x1 = (1 + sqrt2)/2 = 2.414/2 = 1.207cosx1=1+22=2.4142=1.207 (Rejected as > 1)
cos x2 = (1 - sqrt2)/2 = - 0.414/2 = - 0.207cosx2=122=0.4142=0.207
cos x2 = - 0.207 --> x = +- 101^@95x=±10195
x = 258.05 is co-terminal to (- 101.95)
Answers for (0, 2pi)(0,2π)
101^@95 ; 258^@0510195;25805