How do you use the quadratic formula to solve 3csc^2theta-2csctheta=23csc2θ2cscθ=2 for 0<=theta<3600θ<360?

1 Answer
Oct 19, 2017

see below

Explanation:

let u=csc thetau=cscθ then 3 csc^2 theta-2csctheta=23csc2θ2cscθ=2 becomes 3u^2-2u=23u22u=2

then if we put everything on one side we have 3u^2-2u-2=03u22u2=0. So let's use the quadratic formula to solve.

Now take a=3,b=-2, and c=-2a=3,b=2,andc=2 and put it in to the

formula x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

u=(2+-sqrt((-2)^2-4(3)(-2)))/(2(3))u=2±(2)24(3)(2)2(3)

=(2+-sqrt(28))/6=2±286

=(2+- 2sqrt(7))/6=2±276

=(cancel2(1+- sqrt(7)))/(cancel(6)3)

csctheta=(1+- sqrt(7))/3

theta=csc^-1 ((1+- sqrt(7))/3)=sin^-1 (3/(1+- sqrt(7)))

theta=sin^-1 (3/(1+ sqrt(7))) or theta = cancel(sin^-1 (3/(1- sqrt(7)))=undef

theta=55.37370265+360n^@, or theta =180^@-55.37370265+360n^@

theta=55.37370265^@+360n^@, or theta=124.6262974^@+360n^@

Now let's put in n values (integers) to determine our final answer

n=0, theta=55.37^@,124.636^@

Note that if we put in other n-values our answers will be outside of the domain so our solution set is

S={55.37^@,124.636^@}