let u=csc thetau=cscθ then 3 csc^2 theta-2csctheta=23csc2θ−2cscθ=2 becomes 3u^2-2u=23u2−2u=2
then if we put everything on one side we have 3u^2-2u-2=03u2−2u−2=0. So let's use the quadratic formula to solve.
Now take a=3,b=-2, and c=-2a=3,b=−2,andc=−2 and put it in to the
formula x=(-b+-sqrt(b^2-4ac))/(2a)x=−b±√b2−4ac2a
u=(2+-sqrt((-2)^2-4(3)(-2)))/(2(3))u=2±√(−2)2−4(3)(−2)2(3)
=(2+-sqrt(28))/6=2±√286
=(2+- 2sqrt(7))/6=2±2√76
=(cancel2(1+- sqrt(7)))/(cancel(6)3)
csctheta=(1+- sqrt(7))/3
theta=csc^-1 ((1+- sqrt(7))/3)=sin^-1 (3/(1+- sqrt(7)))
theta=sin^-1 (3/(1+ sqrt(7))) or theta = cancel(sin^-1 (3/(1- sqrt(7)))=undef
theta=55.37370265+360n^@, or theta =180^@-55.37370265+360n^@
theta=55.37370265^@+360n^@, or theta=124.6262974^@+360n^@
Now let's put in n values (integers) to determine our final answer
n=0, theta=55.37^@,124.636^@
Note that if we put in other n-values our answers will be outside of the domain so our solution set is
S={55.37^@,124.636^@}