How do you use the quadratic formula is used to find the roots of the equation x^2-6x-19=0?

2 Answers
May 3, 2017

x_1=3-2sqrt 7

x_2=3+2sqrt 7

Explanation:

x^2-6x-19=0

"let us find out discriminant of the function "x^2-6x-19

Delta=sqrt(b^2-4ac)

a=1" , "b=-6" , "c=-19

Delta=sqrt((-6)^2-4*1*(-19)

Delta=sqrt(36+76)

Delta=sqrt(112)

Delta=+-4sqrt7

x_1=(-b-Delta)/(2a)=(6-4sqrt 7)/(2*1)=(6-4sqrt 7)/2=3-2sqrt 7

x_2=(-b+Delta)/(2a)=(6+4sqrt 7)/(2*1)=(6+4sqrt 7)/2=3+2sqrt 7

May 3, 2017

Solution : x=3+2sqrt7 , x= 3- 2sqrt7

Explanation:

Comparing with general equation ax^2+bx+c=0

x^2-6x-19=0 ; a=1 , b= -6 , c=-19 . Discriminant D=b^2-4*a*c = 36+76=112 is positive so roots are real.

Quadratic formula for finding roots isx= -b/(2a) +- sqrt(b^2-4ac)/(2a) or x = -(-6)/2+-sqrt112/2 or x = 3 +- 4*sqrt7/2 or x = 3+- 2*sqrt7

Solution : x=3+2sqrt7 , x= 3-2sqrt7 [Ans]