How do you use the product to sum formulas to write #6sin45^circcos15^circ# as a sum or difference? Trigonometry Trigonometric Identities and Equations Half-Angle Identities 1 Answer Binayaka C. May 11, 2018 #6 sin 45 cos 15 =3/2 (sqrt 3+1)# Explanation: Formula: #sin alpha cos beta=1/2 { sin (alpha+beta) +sin (alpha-beta)}# #alpha=45^0 , beta= 15^0# # 6 sin 45 cos 15 = 6*1/2 {sin(45+15)+sin(45-15)}# or # 6 sin 45 cos 15 = 3 (sin 60+sin 30)# or #6 sin 45 cos 15 =3 (sqrt 3/2+1/2)# or #6 sin 45 cos 15 =3/2 (sqrt 3+1)# [Ans] Answer link Related questions What is the Half-Angle Identities? How do you use the half angle identity to find cos 105? How do you use the half angle identity to find cos 15? How do you use the half angle identity to find sin 105? How do you use the half angle identity to find #tan (pi/8)#? How do you use half angle identities to solve equations? How do you solve #\sin^2 \theta = 2 \sin^2 \frac{\theta}{2} # over the interval #[0,2pi]#? How do you find the exact value for #sin105# using the half‐angle identity? How do you find the exact value for #cos165# using the half‐angle identity? How do you find the exact value of #cos15#using the half-angle identity? See all questions in Half-Angle Identities Impact of this question 3149 views around the world You can reuse this answer Creative Commons License