How do you use the half angle identity to find sin 105?

2 Answers
Mar 20, 2018

sin105^@=sqrt(2+sqrt3)/2sin105=2+32

Explanation:

We need to use the half angle formula:

sin(theta/2)=+-sqrt((1-costheta)/2)sin(θ2)=±1cosθ2

In this case, we want to find sin(105^@)sin(105), so that's what we want sin(theta/2)sin(θ2) to equal. To find out what our thetaθ is, set these to equal to each other:

sin(105^@)=sin(theta/2)sin(105)=sin(θ2)

105^@=theta/2105=θ2

210^@=theta210=θ

This is our thetaθ. Now, we can use the half angle formula:

color(white)=sin(105^@)=sin(105)

=sin(210^@/2)=sin(2102)

=+-sqrt((1-cos(210^@))/2)=±1cos(210)2

=+-sqrt((1-(-sqrt3/2))/2)=± 1(32)2

=+-sqrt((1+sqrt3/2)/2)=±1+322

=+-sqrt((1+sqrt3/2)/2)=±1+322

=+-sqrt((2+sqrt3)/4)=±2+34

=+-sqrt(2+sqrt3)/sqrt4=±2+34

=+-sqrt(2+sqrt3)/2=±2+32

Since 105^@105 is in quadrant II, we know that our answer will be positive that angle is above the xx-axis (and we are taking the sine). Therefore:

sin105^@=sqrt(2+sqrt3)/2sin105=2+32

We can check our answer using a calculator (be sure it is in degrees mode):

![https://www.desmos.com/calculator](useruploads.socratic.org)

Mar 20, 2018

color(blue)(sin (105) = = +-(1/2) sqrt(2 + sqrt3)sin(105)==±(12)2+3

Explanation:

![www2.clarku.edu)

Given theta / 2 = 105^@ = (7pi)/12θ2=105=7π12

theta = (7pi)/6θ=7π6

sin (theta/2) = +- sqrt((1 - cos theta)/2)sin(θ2)=±1cosθ2

sin ((7pi)/12) = +- sqrt((1-cos (((7pi)/12)*2))/2)sin(7π12)=± 1cos((7π12)2)2

sin ((7pi)/12) = +- sqrt((1 - cos ((7pi)/6))/2)sin(7π12)=± 1cos(7π6)2

But cos ((7pi)/6) = cos (pi + pi/6) = - cos (pi/6)cos(7π6)=cos(π+π6)=cos(π6)

:. sin ((7pi)/12) = +- sqrt((1 + cos(pi/6))/2)

=> +- sqrt((1 + sqrt(3)/2)/2)

=> +- sqrt((2 + sqrt3)/4) = +-(1/2) sqrt(2 + sqrt3)