How do you use the double-angle identities to find cot(2x) if cos x= -15/17 and csc x is less than 0?

1 Answer
Jun 18, 2016

161240

Explanation:

Given
cosx=1517andcscx<0sinx<0
both cosxandsinx being <0, x is in 3rd quadrant

So tanx>0

sinx=1cos2x=1(1517)2=817

tanx=sinxcosx=8171517=815

Now

cot2x=1tan(2x)=1tan2x2tanx=1(815)22815
=161152×1516=161240