How do you use the discriminant to determine the nature of the solutions given -3x^2-6x+15=03x26x+15=0?

1 Answer
Jul 25, 2017

Roots are real , x ~~-3.45 , x ~~1.45x3.45,x1.45

Explanation:

-3x^2 -6x +15= 0 or -x^2 -2x +5= 0 3x26x+15=0orx22x+5=0 . Comparing with standard

quadratic equation ax^2+bx+c=0 ax2+bx+c=0 we get here

a= -1 , b= -2 , c= 5 a=1,b=2,c=5. Discriminant is

D = b^2-4ac =( -2)^2-4*(-1)*5=24D=b24ac=(2)24(1)5=24. If discriminant is

D> 0 ; 2D>0;2 roots are real , if D= 0 ; 2D=0;2 roots are equal ,

if D < 0 ; 2D<0;2 roots are complex conjugate in nature. So here

D>0D>0 ,the roots are real.

Roots are x = -b/(2a) +- sqrt (b^2-4ac)/(2a) x=b2a±b24ac2a or

x = 2/-2 +- sqrt (24)/-2a = -1 +- sqrt6 x=22±242a=1±6 or

x ~~-3.45 , x ~~1.45x3.45,x1.45 [Ans]