Step 1) Because the first equation is already solved for yy we can substitute -6x - 32−6x−32 for yy in the second equation and solve for xx:
2y = 10x + 462y=10x+46 becomes:
2(-6x - 32) = 10x + 462(−6x−32)=10x+46
(2 * -6x) - (2 * 32) = 10x + 46(2⋅−6x)−(2⋅32)=10x+46
-12x - 64 = 10x + 46−12x−64=10x+46
color(red)(12x) - 12x - 64 - color(red)(46) = color(red)(12x) + 10x + 46 - color(red)(46)12x−12x−64−46=12x+10x+46−46
0 - 110 = (color(red)(12) + 10)x + 00−110=(12+10)x+0
-110 = 22x−110=22x
-110/color(red)(22) = (22x)/color(red)(22)−11022=22x22
-5 = (color(red)(cancel(color(black)(22)))x)/cancel(color(red)(22))
-5 = x
x = -5
Step 2) Substitute -5 for x in the first equation and calculate y:
y = -6x - 32 becomes:
y = (-6 xx -5) - 32
y = 30 - 32
y = -2
The solution is: x = -5 and y = -2 or (-5, -2)