How do you use partial fractions to find the integral int x/(16x^4-1)dxx16x41dx?

1 Answer
Jul 24, 2017

The answer is =1/16ln(|2x+1|)+1/16ln(|2x-1|)-1/16ln(|4x^2+1|)+C=116ln(|2x+1|)+116ln(|2x1|)116ln(4x2+1)+C

Explanation:

We need

intdx/x=ln(|x|)+Cdxx=ln(|x|)+C

Let's factorise the denominator

16x^4-1=(4x^2-1)(4x^2+1)=(2x+1)(2x-1)(4x^2+1)16x41=(4x21)(4x2+1)=(2x+1)(2x1)(4x2+1)

We can perform the decomposition into partial fractions

x/(16x^4-1)=x/((2x+1)(2x-1)(4x^2+1))x16x41=x(2x+1)(2x1)(4x2+1)

=A/(2x+1)+B/(2x-1)+(Cx+D)/(4x^2+1)=A2x+1+B2x1+Cx+D4x2+1

=(A(2x-1)(4x^2+1)+B(2x+1)(4x^2+1)+(Cx+D)(2x+1)(2x-1))/((2x+1)(2x-1)(4x^2+))=A(2x1)(4x2+1)+B(2x+1)(4x2+1)+(Cx+D)(2x+1)(2x1)(2x+1)(2x1)(4x2+)

The denominators are the same, we compare the numerators

x=A(2x-1)(4x^2+1)+B(2x+1)(4x^2+1)+(Cx+D)(2x+1)(2x-1)x=A(2x1)(4x2+1)+B(2x+1)(4x2+1)+(Cx+D)(2x+1)(2x1)

Let x=-1/2x=12, =>, -1/2=-4A12=4A, =>, A=1/8A=18

Let x=1/2x=12, =>, 1/2=4B12=4B, =>, B=1/8B=18

Let x=0x=0, =>, 0=-A+B-D0=A+BD, =>, D=0D=0

Coefficients of x^3x3,

0=8A+8B+4C0=8A+8B+4C, =>, 4C=-24C=2, C=-1/2C=12

Therefore,

x/(16x^4-1)=(1/8)/(2x+1)+(1/8)/(2x-1)+(-1/2x)/(4x^2+1)x16x41=182x+1+182x1+12x4x2+1

int(xdx)/(16x^4-1)=int(1/8dx)/(2x+1)+int(1/8dx)/(2x-1)+int(-1/2xdx)/(4x^2+1)xdx16x41=18dx2x+1+18dx2x1+12xdx4x2+1

=1/16ln(|2x+1|)+1/16ln(|2x-1|)-1/16ln(|4x^2+1|)+C=116ln(|2x+1|)+116ln(|2x1|)116ln(4x2+1)+C