We need
intdx/x=ln(|x|)+C∫dxx=ln(|x|)+C
Let's factorise the denominator
16x^4-1=(4x^2-1)(4x^2+1)=(2x+1)(2x-1)(4x^2+1)16x4−1=(4x2−1)(4x2+1)=(2x+1)(2x−1)(4x2+1)
We can perform the decomposition into partial fractions
x/(16x^4-1)=x/((2x+1)(2x-1)(4x^2+1))x16x4−1=x(2x+1)(2x−1)(4x2+1)
=A/(2x+1)+B/(2x-1)+(Cx+D)/(4x^2+1)=A2x+1+B2x−1+Cx+D4x2+1
=(A(2x-1)(4x^2+1)+B(2x+1)(4x^2+1)+(Cx+D)(2x+1)(2x-1))/((2x+1)(2x-1)(4x^2+))=A(2x−1)(4x2+1)+B(2x+1)(4x2+1)+(Cx+D)(2x+1)(2x−1)(2x+1)(2x−1)(4x2+)
The denominators are the same, we compare the numerators
x=A(2x-1)(4x^2+1)+B(2x+1)(4x^2+1)+(Cx+D)(2x+1)(2x-1)x=A(2x−1)(4x2+1)+B(2x+1)(4x2+1)+(Cx+D)(2x+1)(2x−1)
Let x=-1/2x=−12, =>⇒, -1/2=-4A−12=−4A, =>⇒, A=1/8A=18
Let x=1/2x=12, =>⇒, 1/2=4B12=4B, =>⇒, B=1/8B=18
Let x=0x=0, =>⇒, 0=-A+B-D0=−A+B−D, =>⇒, D=0D=0
Coefficients of x^3x3,
0=8A+8B+4C0=8A+8B+4C, =>⇒, 4C=-24C=−2, C=-1/2C=−12
Therefore,
x/(16x^4-1)=(1/8)/(2x+1)+(1/8)/(2x-1)+(-1/2x)/(4x^2+1)x16x4−1=182x+1+182x−1+−12x4x2+1
int(xdx)/(16x^4-1)=int(1/8dx)/(2x+1)+int(1/8dx)/(2x-1)+int(-1/2xdx)/(4x^2+1)∫xdx16x4−1=∫18dx2x+1+∫18dx2x−1+∫−12xdx4x2+1
=1/16ln(|2x+1|)+1/16ln(|2x-1|)-1/16ln(|4x^2+1|)+C=116ln(|2x+1|)+116ln(|2x−1|)−116ln(∣∣4x2+1∣∣)+C