How do you use partial fractions to find the integral int (sinx)/(cosx+cos^2x)dx?

1 Answer
Dec 21, 2016

ln|cosx + 1| - ln|cosx| + C

Explanation:

We start with a substitution. Let u = cosx. Then du = -sinxdx -> dx = (du)/-sinx.

=>intsinx/(u + u^2) xx (du)/-sinx

=> int -1/(u + u^2)du

We now factor the denominator to u(1 + u). Let's now write -1/(u + u^2) in partial fractions.

A/u + B/(u + 1) = -1/(u(u +1))

A(u + 1) + B(u) = -1

Au + A + Bu = -1

(A + B)u + A = -1

Now write a system of equations:

{(A + B = 0), (A = -1):}

Solving, we get: A = -1 and B = 1.

Thus, the partial fraction decomposition is -1/u + 1/(u + 1). The integral becomes int(1/(u + 1) - 1/u)du.

We can now integrate using the rule int(1/u)du = ln|u| + C.

=> ln|u + 1| - ln|u| + C

Finally, reinsert the value of u to make the function defined by x instead of u:

=>ln|cosx + 1| - ln|cosx| +C

Hopefully this helps!