Substitute:
t = tanxt=tanx
dt = sec^2x dxdt=sec2xdx
so we have:
int sec^2x/(tanx(tanx+1))dx = int (dt)/(t(t+1))∫sec2xtanx(tanx+1)dx=∫dtt(t+1)
Now we can solve the integral using partial fractions:
1/(t(t+1)) = A/t+B/(t+1)1t(t+1)=At+Bt+1
1/(t(t+1)) = (A(t+1)+ Bt)/(t(t+1))1t(t+1)=A(t+1)+Btt(t+1)
1= (A+B)t +A1=(A+B)t+A
{(A = 1),(B=-1):}
int (dt)/(t(t+1)) = int (1/t-1/(t+1))dt
int (dt)/(t(t+1)) = int (dt)/t-int (dt)/(t+1)
int (dt)/(t(t+1)) = ln abs(t) -ln abs(t+1) +C =ln abs (t/(t+1)) +C
and substituting back x:
int sec^2x/(tanx(tanx+1))dx = ln abs (tanx/(tanx+1)) +C
int sec^2x/(tanx(tanx+1))dx = ln abs (sinx/(sinx+cosx)) +C