How do you use partial fractions to find the integral int (e^x)/((e^x-1)(e^x+4))dx?

1 Answer
Jul 20, 2017

inte^x/((e^x-1)(e^x+4))dx=1/5(ln|1-e^(-x)|-ln|1+4e^(-x)|)

Explanation:

Let e^x/((e^x-1)(e^x+4))=A/(e^x-1)+B/(e^x+4)

=(Ae^x+4A+Be^x-B)/((e^x-1)(e^x+4))=(e^x(A+B)+4A-B)/((e^x-1)(e^x+4))

Comparing like terms, 4A-B=0 i.e. B=4A and A+B=1

i.e. A=1/5 and B=4/5 and

inte^x/((e^x-1)(e^x+4))dx=1/5int1/(e^x-1)dx+4/5int1/(e^x+4)dx

= 1/5inte^(-x)/(1-e^(-x))dx+4/5inte^(-x)/(1+4e^(-x))dx

Let u=1-e^(-x) then du=e^(-x)dx and

v=1+4e^(-x) then dv=-4e^(-x)dx

Hence 1/5inte^(-x)/(1-e^(-x))dx+4/5inte^(-x)/(1+4e^(-x))dx

= 1/5int(du)/u-1/5int(dv)/v

= 1/5(ln|u|-ln|v|)

= 1/5(ln|1-e^(-x)|-ln|1+4e^(-x)|)