The denominator is
x^3-8=(x-2)(x^2+2x+4)
Therefore,
(6x)/(x^3-8)=(6x)/((x-2)(x^2+2x+4))
=A/(x-2)+(Bx+C)/(x^2+2x+4)
=(A(x^2+2x+4)+(Bx+C)(x-2))/((x-2)(x^2+2x+4))
So,
6x=A(x^2+2x+4)+(Bx+C)(x-2)
Let x=2, =>, 12=12A, =>, A=1
Let x=0, =>, 0=4A-2C, =>, C=2
Coefficients of x^2, =>, 0=A+B, =>, B=-1
Therefore,
(6x)/(x^3-8)=1/(x-2)+(-x+2)/(x^2+2x+4)
So,
int(6xdx)/(x^3-8)=color(green)(intdx/(x-2))-int((x-2)dx)/(x^2+2x+4)
We integrate separately
color(green)(intdx/(x-2))=color(green)(ln(∣x-2∣))
int((x-2)dx)/(x^2+2x+4)=int((x+2-4)dx)/(x^2+2x+4)
=color(red)(int((x+2)dx)/(x^2+2x+4))-color(blue)(int(4dx)/(x^2+2x+4))
Let u=x^2+2x+4, =>, du=(2x+2)dx
Therefore,
color(red)(int((x+2)dx)/(x^2+2x+4)=1/2int(du)/u=1/2lnu)
color(red)(=1/2ln(∣x^2+2x+4∣))
x^2+2x+4=x^2+2x+1+3=(x+1)^2+3
color(blue)(int(4dx)/(x^2+2x+4)=4int(dx)/((x+1)^2+3))
color(blue)(=4int(dx)/(3(((x+1)/sqrt3)^2+1)))
color(blue)(=4/3int(dx)/((((x+1)/sqrt3)^2+1)))
Let tantheta=(x+1)/sqrt3=> sec^2theta d theta=dx/sqrt3
Therefore,
color(blue)(4/3int(dx)/((((x+1)/sqrt3)^2+1))=4/3int(sqrt3 sec^2 theta d theta)/(1+ tan^2theta))
But 1+tan^2 theta=sec^2theta
color(blue)(4/3int(dx)/((((x+1)/sqrt3)^2+1))=4/sqrt3intd theta)
color(blue)(=4/sqrt3arctan((x+1)/sqrt3))