How do you use partial fractions to find the integral int (6x)/(x^3-8)dx?

1 Answer
Jan 8, 2017

The answer is =color(green)(ln(∣x-2∣))-color(red)(1/2ln(∣x^2+2x+4∣))+color(blue)(4/sqrt3arctan((x+1)/sqrt3))+C

Explanation:

The denominator is

x^3-8=(x-2)(x^2+2x+4)

Therefore,

(6x)/(x^3-8)=(6x)/((x-2)(x^2+2x+4))

=A/(x-2)+(Bx+C)/(x^2+2x+4)

=(A(x^2+2x+4)+(Bx+C)(x-2))/((x-2)(x^2+2x+4))

So,

6x=A(x^2+2x+4)+(Bx+C)(x-2)

Let x=2, =>, 12=12A, =>, A=1

Let x=0, =>, 0=4A-2C, =>, C=2

Coefficients of x^2, =>, 0=A+B, =>, B=-1

Therefore,

(6x)/(x^3-8)=1/(x-2)+(-x+2)/(x^2+2x+4)

So,

int(6xdx)/(x^3-8)=color(green)(intdx/(x-2))-int((x-2)dx)/(x^2+2x+4)

We integrate separately

color(green)(intdx/(x-2))=color(green)(ln(∣x-2∣))

int((x-2)dx)/(x^2+2x+4)=int((x+2-4)dx)/(x^2+2x+4)

=color(red)(int((x+2)dx)/(x^2+2x+4))-color(blue)(int(4dx)/(x^2+2x+4))

Let u=x^2+2x+4, =>, du=(2x+2)dx

Therefore,

color(red)(int((x+2)dx)/(x^2+2x+4)=1/2int(du)/u=1/2lnu)

color(red)(=1/2ln(∣x^2+2x+4∣))

x^2+2x+4=x^2+2x+1+3=(x+1)^2+3

color(blue)(int(4dx)/(x^2+2x+4)=4int(dx)/((x+1)^2+3))

color(blue)(=4int(dx)/(3(((x+1)/sqrt3)^2+1)))

color(blue)(=4/3int(dx)/((((x+1)/sqrt3)^2+1)))

Let tantheta=(x+1)/sqrt3=> sec^2theta d theta=dx/sqrt3

Therefore,

color(blue)(4/3int(dx)/((((x+1)/sqrt3)^2+1))=4/3int(sqrt3 sec^2 theta d theta)/(1+ tan^2theta))

But 1+tan^2 theta=sec^2theta

color(blue)(4/3int(dx)/((((x+1)/sqrt3)^2+1))=4/sqrt3intd theta)

color(blue)(=4/sqrt3arctan((x+1)/sqrt3))