How do you solve y=-4x^2-x-3, y=x^2+2x-5y=4x2x3,y=x2+2x5?

1 Answer
Apr 22, 2017

(2/5,-101/25),(-1,-6)(25,10125),(1,6)

Explanation:

color(red)(y)=-4x^2-x-3to(1)y=4x2x3(1)

color(red)(y)=x^2+2x-5to(2)y=x2+2x5(2)

Since both equations are expressed in terms of y we can equate the right sides.

rArrx^2+2x-5=-4x^2-x-3x2+2x5=4x2x3

"collect terms on left side and equate to zero"collect terms on left side and equate to zero

rArr5x^2+3x-2=05x2+3x2=0

rArr(5x-2)(x+1)=0(5x2)(x+1)=0

rArrx=2/5" or " x=-1x=25 or x=1

Substitute these values into either ( 1 ) or ( 2 ) and evaluate for y

"evaluating in " (2)evaluating in (2)

x=2/5toy=(2/5)^2+2(2/5)-5=-101/25x=25y=(25)2+2(25)5=10125

x=-1to(-1)^2+2(-1)-5=-6x=1(1)2+2(1)5=6

"points of intersection are " (2/5,-101/25),(-1,-6)points of intersection are (25,10125),(1,6)
graph{(y+4x^2+x+3)(y-x^2-2x+5)=0 [-12.48, 12.49, -7.24, 6.24]}