How do you solve y = 2 cos 3 (x - (pi/4))y=2cos3(x(π4))?

1 Answer
Apr 27, 2015

Solve y = 2. cos 3(x - Pi/4) = 0 .

Call (x - Pi/4) = t -> y = 2. cos 3t = 0

cos 3t = 0 --> 3t = Pi/2; and 3t = 3Pi/2

3t = Pi/2 -> t = Pi/6 (1)

3t = 3Pi/2 -> t = Pi/2 (2)

(1) t = (x - Pi/4) = Pi/6 -> x = 5Pi/12

(2) t = (x - Pi/4) = Pi/2 -> x = Pi/2 + pi/4 = 6Pi/8 = 3Pi/4

Answer:

x = 5Pi/12 and x = 3Pi/4

Check:

(1) x = 5Pi/12 -> t = x - Pi/4 = 5Pi/12 - Pi/4 = Pi/6 -> 3t = 3Pi/6 = Pi/2 -> cos 3t = cos Pi/2 = 0.

Correct.

(2) x = 3Pi/4 -> t = (x - Pi/4) = 3Pi/4 - Pi/4 = Pi/2 -> 3t = 3Pi/2 -> cos 3t = cos 3Pi/2 = 0.

Correct.