How do you solve x² + y² = 20 and x + y = 6?

1 Answer
May 5, 2018

When y=2, x=4

When y=4,x=2

Explanation:

x + y = 6"...................Eq1"

x^2 + y^2 = 20"..............Eq2"

"Using the identity":color(red)(x^2+y^2=(x+y)^2-2xy

x^2+y^2=(x+y)^2-2xy

Substituting : x + y = 6 and x^2 + y^2 = 20

20=(6)^2-2xy

36-2xy=20

-2xy=-16

xy=8

color(blue)(x=8/y

Substituting x=8/y in "Eq1"

8/y + y = 6

8+y^2=6y

y^2-6y+8=0

(y-2)(y-4)=0

So, color(darkred)(y=2 or y=4

When color(magenta)(y =2

x+2=6

color(magenta)(x=4

When color(darkorange)(y =4

x+4=6

color(darkorange)(x=2

~Hope this helps! :)