How do you solve x^4 + x^2 = 1 x4+x2=1?
1 Answer
Mar 14, 2016
Solve as a quadratic in
Explanation:
x^4+x^2=1x4+x2=1
Subtract
x^4+x^2-1 = 0x4+x2−1=0
Writing
(x^2)^2+(x^2)-1 = 0(x2)2+(x2)−1=0
This is in the form
We can use the quadratic formula to find:
x^2 = (-b+-sqrt(b^2-4ac))/(2a)x2=−b±√b2−4ac2a
=(-1+-sqrt(1^2-(4*1*-1)))/(2*1)=−1±√12−(4⋅1⋅−1)2⋅1
=(-1+-sqrt(5))/2=−1±√52
So:
x = +-sqrt((-1+sqrt(5))/2)x=±√−1+√52
Or:
x = +-sqrt((-1-sqrt(5))/2) = +-sqrt((1+sqrt(5))/2)ix=±√−1−√52=±√1+√52i