How do you solve x^4 + x^2 = 1 x4+x2=1?

1 Answer
Mar 14, 2016

Solve as a quadratic in x^2x2 using the quadratic formula, then take square roots...

Explanation:

x^4+x^2=1x4+x2=1

Subtract 11 from both sides to get:

x^4+x^2-1 = 0x4+x21=0

Writing x^4 = (x^2)^2x4=(x2)2 we have:

(x^2)^2+(x^2)-1 = 0(x2)2+(x2)1=0

This is in the form aX^2+bX+c = 0aX2+bX+c=0 with X=x^2X=x2, a=1a=1, b=1b=1 and c=-1c=1.

We can use the quadratic formula to find:

x^2 = (-b+-sqrt(b^2-4ac))/(2a)x2=b±b24ac2a

=(-1+-sqrt(1^2-(4*1*-1)))/(2*1)=1±12(411)21

=(-1+-sqrt(5))/2=1±52

So:

x = +-sqrt((-1+sqrt(5))/2)x=±1+52

Or:

x = +-sqrt((-1-sqrt(5))/2) = +-sqrt((1+sqrt(5))/2)ix=±152=±1+52i